Genomic imprinting mediates dosage compensation in a young plant XY system

Muyle, A., Zemp, N., Fruchard, C., Cegan, R., Vrána, J., Deschamps, C., Tavares, R., Hobza, R., Picard, F., Widmer, A., Marais, G.A.B.
NATURE PLANTS 4: 677-680, 2018

Abstract: Sex chromosomes have repeatedly evolved from a pair of autosomes. Consequently, X and Y chromosomes initially have similar gene content, but ongoing Y degeneration leads to reduced expression and eventual loss of Y genes1. The resulting imbalance in gene expression between Y genes and the rest of the genome is expected to reduce male fitness, especially when protein networks have components from both autosomes and sex chromosomes. A diverse set of dosage compensating mechanisms that alleviates these negative effects has been described in animals2–4. However, the early steps in the evolution of dosage compensation remain unknown, and dosage compensation is poorly understood in plants5. Here, we describe a dosage compensation mechanism in the evolutionarily young XY sex determination system of the plant Silene latifolia. Genomic imprinting results in higher expression from the maternal X chromosome in both males and females. This compensates for reduced Y expression in males, but results in X overexpression in females and may be detrimental. It could represent a transient early stage in the evolution of dosage compensation. Our finding has striking resemblance to the first stage proposed by Ohno6 for the evolution of X inactivation in mammals.
DOI: 10.1038/ s41477-018-0221-y.
Fulltext: contact IEB authors
IEB authors: Roman Hobza, Jan Vrána